ANTIMICROBIAL PROPERTIES OF ELECTROCHEMICALLY ACTIVATED SOLUTIONS OF CARBOXYLIC ACID SALTS VS. SODIUM CHLORIDE
Abstract and keywords
Abstract (English):
Alternative disinfection methods involve no chlorine-containing solutions, which, despite their effectiveness, generate toxic by-products. This research compared the physicochemical and antimicrobial properties of electrolytic sodium chloride with electrochemically activated solutions of carboxylic acid salts (sodium acetate, citrate, lactate). The focus was on safety and sustainability. Unsing an electrolysis unit with a diaphragm electrochemical module and electrochemically activated 1% salt solutions, the authors studied the redox potential, the hydrogen ion activity index (pH), the oxidant content (active chlorine equivalent), and the in-vitro bactericidal efficacy against Pseudomonas aeruginosa (strains ATCC 25668, resistant pc 47, 10 min exposure). The sodium lactate provided microbial reduction by 4–6 lg CFU/cm3 while sodium acetate and citrate solutions were less effective (3.9–4.9 and 3.4–4.0 lg CFU/cm3, respectively). In case of sodium chloride, the reduction was as high as 8 lg CFU/cm3, the initial titers being 8.0 and 8.2 lg CFU/cm3. The electrolytic monosolutions of carboxylic acid salts (Kolbe reaction) demonstrated low results in bactericidal agents, pH, and oxidation-reduction potential. Carboxylic acid salts combined with sodium chloride could synergistically enhance the antimicrobial effect while reducing toxic by-products. If optimized, such electrolysis parameters as voltage, current strength, and initial solutions may increase the disinfection efficiency. The results obtained can be used to develop environmentally safe disinfectants for the food industry.

Keywords:
food safety, electrochemical activation, carboxylic acid salts, Kolbe electrolysis, Pseudomonas aeruginosa, antimicrobial activity, disinfection, toxic by-products
Text
Text (PDF): Read Download
References

1. Smith, A. M. Outbreak of Listeria monocytogenes in South Africa, 2017–2018: Laboratory activities and experiences associated with whole-genome sequencing analysis of isolates / A. M. Smith [et. al.] // Foodborne pathogens and disease. 2019. Vol. 16(7). P. 524–530. https://doi.org/10.1089/fpd.2018.2586

2. Gruzdeva, O. A. Listeria monocytogenes segodnya / O. A. Gruzdeva [i dr.] // Rossiyskiy medicinskiy zhurnal. 2021. T. 27. №. 5. S. 491–500. http://doi.org/10.17816/0869-2106-2021-27-5-491-500; https://elibrary.ru/uehqxs

3. Galstyan, A. G. Grani molochnoy nauki: evolyucionnye imperativy i determinanty razvitiya / A. G. Galstyan [i dr.]. – M.: VNIMI, 2024. – 319 s.

4. Manevich, B. V. Elektroliznye rastvory v sanitarnoy obrabotke: proshloe i nastoyaschee / B. V. Manevich, E. N. Titov // Molochnaya promyshlennost'. 2024. №. 1. S. 60–63. https://doi.org/10.21603/1019-8946-2024-1-3; https://elibrary.ru/dakxwz

5. Bakhir, V. M. Electrochemical activation inventions systems technology / V. M. Bakhir [et al.]. – Moscow: Viva-Star Printing Plant Publ, 2021. – 660 p.

6. Li, X. Electrochemical disinfection for human health protection: Disinfection Mechanisms, System Innovations, Applications / X. Li [et al.] // Journal of Environmental Chemical Engineering. 2024. Vol. 12(5). 114073. https://doi.org/10.1016/j.jece.2024.114073

7. Nemati, V. Advances in Lettuce postharvest processing: implications for microbiological safety and storage quality / V. Nemati // Journal of Agriculture and Food Research. 2025. Vol. 21. 101824. https://doi.org/10.1016/j.jafr.2025.101824

8. Stefanello, A. Comparison of electrolized water and multiple chemical sanitizer action against heat-resistant molds (HRM) / A. Stefanello [et al.] // International journal of food microbiology. 2020. Vol. 335. 108856. https://doi.org/10.1016/j.ijfoodmicro.2020.108856

9. Maojin, T. Bacterial Spore Inactivation Technology in Solid Foods: A Review / T. Maojin [et al.] //Journal of Food Protection. 2025. Vol. 88(5). 100479. https://doi.org/10.1016/j.jfp.2025.100479

10. Ignatov, I. Preparation of electrochemically activated water solutions (catholyte/anolyte) and studying their physical-chemical properties / I. Ignatov [et al.] // Journal of Medicine, Physiology and Biophysics. 2015. Vol. 13. P. 64–78.

11. Deza, M. A. Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water / M. A. Deza, M. Araujo, M. J. Garrido // Letters in applied microbiology. 2005. Vol. 40(5). P. 341–346. https://doi.org/10.1111/j.1472-765X.2005.01679.x

12. Mishima, S. Control of microbial contamination in dental unit waterlines: Effectiveness of neutral electrolytic water / S. Mishima [et al.] // Journal of Oral and Maxillofacial Surgery, Medicine and Pathology. 2025. Vol. 37(3). P. 512–517. https://doi.org/10.1016/j.ajoms.2024.11.012

13. Rahman, S. M. Controlling microbial population in livestock and poultry industry using electrolyzed water as an emerging technology for ensuring food safety / S. M. Rahman [et al.] // Food Control. 2023. Vol. 152. 109843. https://doi.org/10.1016/j.foodcont.2023.109843

14. Pospelov, A. V. Korroziya nerzhaveyuschih staley v dezinficiruyuschih rastvorah / A. V. Pospelov [i dr.] // Vestnik Polockogo gosudarstvennogo universiteta. Seriya F. Stroitel'stvo. Prikladnye nauki. 2023. № 1 (33). S. 90–93. https://doi.org/10.52928/2070-1683-2023-33-1-94-103; https://elibrary.ru/kleumv

15. Hernandez-Pimentel, V. M. Effect of neutral electrolyzed water as antimicrobial intervention treatment of chicken meat and on trihalomethanes formation / V. M. Hernandez-Pimentel [et al.] // Journal of Applied Poultry Research. 2020. Vol. 29(3). P. 622–635. https://doi.org/10.1016/j.japr.2020.04.001

16. Gomez-Lopez, V. M. Generation of trihalomethanes with chlorine-based sanitizers and impact on microbial, nutritional and sensory quality of baby spinach / V. M. Gomez-Lopez [et al.] // Postharvest Biology and Technology. 2013. Vol. 85. P. 210–217. https://doi.org/10.1016/j.postharvbio.2013.05.012

17. Busch, M. Exploring the mechanism of hypochlorous acid decomposition in aqueous solutions / M.Busch, N. Simic, E. Ahlberg // Physical Chemistry Chemical Physics. 2019. №. 35. P. 19342–19348. https://doi.org/10.1039/C9CP03439K

18. Cabezas-Pizarro, J. Antimicrobial activity of different sodium and potassium salts of carboxylic acid against some common foodborne pathogens and spoilageassociated bacteria / J. Cabezas-Pizarro [et al.] // Revista Argentina de microbiologia. 2018. Vol. 50. №. 1. P. 56–61. https://doi.org/10.1016/j.ram.2016.11.011

19. Liato, V. Influence of electro-activated solutions of weak organic acid salts on microbial quality and overall appearance of blueberries during storage / V. Liato, R. Hammami, M. Aider // Food microbiology. 2017. Vol. 64. P. 56–64. https://doi.org/10.1016/j.fm.2016.12.010

20. Liato, V. Electro-activation of potassium acetate, potassium citrate and calcium lactate: impact on solution acidity, Redox potential, vibrational properties of Raman spectra and antibacterial activity on E. coli O157: H7 at ambient temperature / V. Liato [et al.] // SpringerPlus. 2016. Vol. 5. P. 1–18. https://doi.org/10.1186/s40064-016-3453-1

21. Cayemitte, P. E. Study of the impacts of electro-activated solutions of calcium lactate, calcium ascorbate and their equimolar mixture combined with moderate heat treatments on the spores of Bacillus cereus ATCC 14579 under model conditions and in fresh salmon / P. E. Cayemitte [et al.] // International journal of food microbiology. 2021. Vol. 358. P. 109285. https://doi.org/10.1016/j.ijfoodmicro.2021.109285

22. Liato, V. Study of the antibacterial activity of electro-activated solutions of salts of weak organic acids on Salmonella enterica, Staphylococcus aureus and Listeria monocytogenes / V. Liato [et al.] // Journal of Industrial Microbiology and Biotechnology. 2017. Vol. 44. №. 1. P. 23–33. https://doi.org/10.1007/s10295-016-1859-y

23. Liato, V. Effect of electro-activated solutions of sodium acetate and sodium propionate on geosmin producing Streptomyces avermitilis strain / V. Liato, M. Aider // Chemosphere. 2017. Vol. 188. P. 434–443. https://doi.org/10.1016/j.chemosphere.2017.09.011

24. Faraday, M. Siebente reihe von experimental‐Untersuchungen über Elektricität / M.Faraday // Annalen der Physik. 1834. Vol. 109. №. 31‐34. P. 481–520. https://doi.org/10.1002/andp.18341093102

25. Kolbe, H. Ueber die Zersetzung der Valeriansäure durch den galvanischen Strom / H.Kolbe // Journal für Praktische Chemie. 1847. Vol. 42. №. 1. P. 311–313. https://doi.org/10.1002/prac.18470420140

26. Liu, S. Understanding the reaction mechanism of Kolbe electrolysis on Pt anodes / S. Liu [et al.] // Chem Catalysis. 2022. T. 2. №. 5. P. 1100–1113. https://doi.org/10.1016/j.checat.2022.02.01

27. Mira, N. P. On the potential role of naturally occurring carboxylic organic acids as anti-infective agents: opportunities and challenges / N. P. Mira, M. Henriques, F. Gomes [et al.] // International Journal of Infectious Diseases. 2024. Vol. 140. P. 119–123. https://doi.org/10.1016/j.ijid.2024.01.011

28. Liao, L. B. The generation and inactivation mechanism of oxidation–reduction potential of electrolyzed oxidizing water / L. B. Liao, W. M. Chen, X. M. Xiao // Journal of Food Engineering. 2007. Vol. 78. №. 4. P. 1326–1332. https://doi.org/10.1016/j.jfoodeng.2006.01.004

29. Manevich, B. V. Vozmozhnosti ispol'zovaniya kislotnyh anolitov v processah sanitarnoy obrabotki / B.V. Manevich, E. N. Titov // Molochnaya promyshlennost'. 2024. № 3. S. 87–94. DOI: https://doi.org/10.21603/1019-8946-2024-3-1

30. Weckhuysen, B. M. Mechanistic insights in electro-synthesis of biomass-derived chemicals: The Kolbe reaction / B. M. Weckhuysen // Chem Catalysis. 2022. Vol. 2. №. 5. P. 920–922. https://doi.org/10.1016/j.checat.2022.04.017

31. Baumgarten, N. Scalable Microreactor Concept for the Continuous Kolbe Electrolysis of Carboxylic Acids Using Aqueous Electrolyte / N. Baumgarten [et al.] // ChemistryOpen. 2022. Vol. 11. №. 10. P. e202200171. https://doi.org/10.1002/open.202200171

Login or Create
* Forgot password?