Russian Federation
Russian Federation
Russian Federation
GRNTI 27.01 Общие вопросы математики
GRNTI 31.01 Общие вопросы химии
GRNTI 34.01 Общие вопросы биологии
Primary and secondary alcohols, obtained as a product of processing of plant raw materials, can be used as additives in fuel. Mixtures of n-alkanes, cyclic alkanes and aromatic hydrocarbons can act as a model for gasoline and diesel fuel. Therefore, it is necessary to study the characteristics of mixtures of alcohols with normal, cyclic and aromatic hydrocarbons. To simulate liquid-solid and liquid-vapor phase equilibria, a method is used to minimize excess Gibbs energy by the solvation parameter. The authors developed the PCEAS (Phase Charts Eutectic and Azeotropic Systems) software. The input data in the case of constant pressure are the temperature T 0 and the enthalpy of the phase change H 0 of the pure components. Prediction of the thermodynamic parameters of secondary alcohols is used to calculate the eutectic and azeotropic parameters of the secondary alcohol - n-alkane mixture: composition, temperature, melting enthalpy and evaporation. The model makes it possible to determine the average value of the association parameter in the liquid phase k . Experimental data for azeotropic mixtures made it possible to establish the association parameter in the vaporphase of the systems under study. The results of calculations can be used to select the optimal composition and obtain the requiredcharacteristics of biofuel.
Biofuel, secondary alcohols, minimization of excess Gibbs energy, eutectic, azeotrope
1. Moreau A., Segovia J.J., Bermejo M.D., and Martín M.C. Characterizing second generation biofuels: Excess enthalpies and vapour- liquid equilibria of the binary mixtures containing 1-pentanol or 2-pentanol and n-hexane. Fluid Phase Equilibria, 2016, vol. 425, pp. 177-182. DOI:https://doi.org/10.1016/j.fluid.2016.05.031.
2. Moreau A. Thermodynamic Characterization of Environmentally Sustainable Fuels: Experimental Determination of the Vapor-liquid Equilibrium and the Excess Enthalpies for Mixtures of Interest to the Development of Biogasolines, PhD Thesis, University of Valladolid, Spain, 2015.
3. Moreau A., Martín M.C., Chamorro C.R., and Segovia J.J. Thermodynamic characterization of second generation biofuels: Vapour- liquid equilibria and excess enthalpies of the binary mixtures 1-pentanol and cyclohexane or toluene. Fluid Phase Equilibria, 2012, vol. 317, pp. 127-131. DOI:https://doi.org/10.1016/j.fluid.2012.01.007.
4. Moreau A., Martín M.C., Aguilar F., and Segovia J.J. Vapour-liquid equilibria and excess enthalpies of the binary mixtures 1-pentanol with 2,2,4-trimethylpentane or n-heptane. Fluid Phase Equilibria, 2013, vol. 338, pp. 95-99. DOI:https://doi.org/10.1016/j.fluid.2012.11.005.
5. Moreau A., Segovia J.J., Villamanan R.M., and Martín M.C. Thermodynamic behaviour of second generation biofuels: Vapour-liquid equilibria and excess enthalpies of the binary mixtures 2-pentanol and n-heptane or 2,2,4-trimethylpentane. Fluid Phase Equilibria, 2014, vol. 384, pp. 89-94. DOI:https://doi.org/10.1016/j.fluid.2014.10.016.
6. Moreau A., Segovia J.J., Rubio J., and Martín M.C. Thermodynamics properties, VLE and HE, of the systems 2-pentanol and cyclohexane or methylbenzene for contributing to the knowledge of new biofuels Fluid Phase Equilibria, 2016, vol. 409, pp. 92-97. DOI:https://doi.org/10.1016/j.fluid.2015.09.035.
7. Peng C., Liu H., and Hu Y. Solid-liquid equilibria based on an equation of state for chain fluids. Fluid Phase Equilibria, 2001, vol. 180, pp. 299-311. DOI:https://doi.org/10.1016/S0378-3812(01)00369-7.
8. Collinet E. and Gmehling J. Activity coefficient at infinite dilution, azeotropic data, excess enthalpies and solid-liquid-equilibria for binary systems of alkanes and aromatics with esters. Fluid Phase Equilibria, 2005, vol. 230, pp. 131-142. DOI:https://doi.org/10.1016/j.fluid.2004.12.005.
9. Lei Z., Chen B., Li C., and Liu H. Predictive Molecular Thermodynamic Models for Liquid Solvents, Solid Salts, Polymers, and Ionic Liquids. Chemical Reviews, 2008, vol. 108, no. 4, pp. 1419-1455. DOI:https://doi.org/10.1021/cr068441+.
10. Kontogeorgis G.M., Tsivintzelis I., Michelsen M.L., and Stenby E.H. Towards predictive association theories. Fluid Phase Equilibria, 2011, vol. 301, pp. 244-256. DOI:https://doi.org/10.1016/j.fluid.2010.11.025.
11. Esina Z.N., Korchuganova M.R., and Murashkin V.V. Matematicheskoe modelirovanie fazovogo perekhoda zhidkost' - tverdoe [Mathematical simulation of phase change fluid - solid]. Vestnik TGU. Upravlenie, vychislitel'naya tekhnika i informatika [Tomsk State University Journal of Control and Computer Science], 2011, no. 3(16), pp. 13-23.
12. Korchuganova M.R., Esina Z.N., and Murashkin V.V. Vozmozhnosti modeli PCEAS dlya rascheta fazovykh ravnovesiy zhidkost'-tverdoe i zhidkost'-par pri postoyannom davlenii [Features of the PCEAS model for the calculation of liquid-solid and liquid-vapor phase equilibria at constant pressure]. Izvestiya vuzov. Seriya: Khimiya i khimicheskaya tekhnologiya [Russian journal of chemistry and chemical technology], 2014, vol. 57, no. 1, pp. 43-46.
13. Esina Z.N., Murashkin V.V., and Korchuganova M.R. Phase Chart Eutectic and Azeotropic System (PCEAS). Certificate of state registration of software no. 2012618394 (RU), 2012.
14. Esina Z.N., Murashkin V.V., Korchuganova M.R. Phase Chart Eutectic and Azeotropic System (PCEAS). Certificate of state registration of software no. 2012620983 (RU) , 2012.
15. Kogan V.B. Geterogennye ravnovesiya [Heterogeneous equilibria]. St. Petersburg: Khimiya Publ., 1968. 432 p.
16. Ogorodnikov S.K., Lesteva T.M., and Kogan V.B. (ed.) Azeotropnye smesi [Azeotropic mixtures]. St. Petersburg: Khimiya Publ., 1971. 849 p.