INTELLIGENT TEXT PROCESSING: A REVIEW OF AUTOMATED SUMMARIZATION METHODS
Abstract and keywords
Abstract (English):
Interest in innovative technological strategies and modern digital tools has increased significantly due to the need to manage large amounts of unstructured data. This paper reviews current paradigms and services for automated summarization, developed based on interdisciplinary research in linguistics, computer technologies, and artificial intelligence. It focuses on syntactic and lexical techniques employed by neural network models for text compression. The paper presents performance examples of such AI-powered services as QuillBot, Summate.it, WordTune, SciSummary, Scholarcy, and OpenAI ChatGPT. The contemporary automated models proved effective in using extractive and abstractive methods to generate summaries of varying quality and length. The extractive approach relies on identifying the most significant sentences from the original text, while abstractive algorithms create new sentence structures that preserve the main idea of the original content. Automated summarizers effectively utilize text compression techniques that are inherent to human approach to text processing, e.g., they exclude redundant information, simplify complex structures, and generalize data. These technologies provide high accuracy and coherence in the generated summaries, though each summarization model has its limitations. Optimal results depend on the specifics of the task at hand: extractive models provide brevity and precision while abstractive ones allow for deeper semantic processing. Automated summarization is becoming an important tool in various fields that require effective analysis and processing of large text data.

Keywords:
automated summarization, auto summary, extractive summarization, abstractive summarization, neural networks, artificial intelligence, interdisciplinary research
Text
Text (PDF): Read Download
References

1. Arefeva E. S. Article as the main genre of modern scientific style. Modern linguistic and communicative practices, ed. Rozavatov D. A. Saratov, 2018, iss. 1, 14–19. (In Russ.) https://elibrary.ru/xvzowd

2. Bezlepkin E. A., Zaykova A. S. Neurophilosophy, philosophy of neuroscience, and philosophy of artificial intelligence: The problem of distinguishing. Russian Journal of Philosophical Sciences, 2021, 64(1): 71–87. (In Russ.) https://doi.org/10.30727/0235-1188-2021-64-1-71-87

3. Belov S. D., Zrelova D. P., Zrelov P. V., Korenkov V. V. Overview of methods for automatic natural language text processing. System Analysis in Science and Education, 2020, (3): 8–22. (In Russ.) https://doi.org/10.37005/2071-9612-2020-3-8-22

4. Belyakova A. Yu., Belyakov Yu. D. Overview of text summarization methods. Inzhenernyi vestnik Dona, 2020, (10): 142–159. (In Russ.) https://elibrary.ru/ayyyfq

5. Vertinova A. A., Pashuk N. R., Makogonova P. V., Kosheleva A. I. Assessing the infoglut impact on decision-making. Liderstvo i menedzhment, 2022, 9(3): 877–890 (In Russ.) https://doi.org/10.18334/lim.9.3.116218

6. Goloviznina V. S. Automatic abstracting of texts. ITNT-2022: Proc. VIII Intern. Conf., Samara, 23–27 May 2022. Samara: Samara University, 2022, vol. 4. (In Russ.) https://elibrary.ru/evsbxc

7. Gorbachev A. D., Sinitsyn A. V. Comparative analysis of text summarization algorithms for the design and development of a software package. The development of modern science and technology in the context of transformational processes: Proc. 11 Intern. Sci.-Prac. Conf., Moscow, 12 May 2023. St. Petersburg: Pechatnyy tsekh, 2023, 43–52. (In Russ.) https://elibrary.ru/nonvjs

8. Grinev-Griniewicz S. V., Sorokina E. A., Molchanova M. M. Reconsidering the definition of the term. RUDN Journal of Language Studies, Semiotics and Semantics, 2022, 13(3): 710–729. (In Russ.) https://doi.org/10.22363/2313-2299-2022-13-3-710-729

9. Guryeva N. N. Stages and aspects of the study of parceled constructions in Russian linguistics. Vestnik Tverskogo gosudarstvennogo universiteta. Seriia: Filologiia, 2020, (1): 109–114. (In Russ.) https://elibrary.ru/xjljuw

10. Dorosh M., Raikovskii D. I., Pugin K. V. Text summarization problem. Innovatsii. Nauka. Obrazovanie, 2022, (49): 2036–2044. (In Russ.) https://elibrary.ru/znzfhc

11. Zhigalov A. Yu., Grishina L. S., Bolodurina I. P. Research of artificial intelligence models for automatic and abstracting of texts. Digital technologies in education, science, and society: Proc. XVII All-Russian Sci.-Prac. Conf., Petrozavodsk, 22–24 Nov 2023. Petrozavodsk: PetrSU, 2023, 36–38. (In Russ.) https://elibrary.ru/tugzpu

12. Ivanovskaia O. I., Krivodereva L. V., Kharchenko V. A. A text compression method. Vestnik nauchnykh konferentsii, 2021, (7-2): 57–58. (In Russ.) https://elibrary.ru/hptaxm

13. Ivaniukovich V. A., Borkovskii N. B., Lefanova I. V. Application of neural network technologies in processing unstructured information. Information resource management: Proc. XIX Intern. Sci.-Prac. Conf., Minsk, 22 Mar 2023. Minsk: AHA RB, 2023, 277–279. (In Russ.) https://elibrary.ru/funmfv

14. Korotkikh E. G., Nosenko N. V. Semantic and pragmatic text compression in teaching English for special purposes. Sovremennye problemy nauki i obrazovaniia, 2021, (2). (In Russ.) https://doi.org/10.17513/spno.30665

15. Lenkova T. A. The lead paragraph is a structural element of the article and a self-contained text. Filologiya i chelovek, 2023, (1): 179–191. (In Russ.) https://elibrary.ru/zxfpzg

16. Malisheva E. Yu., Lichagina V. A. Mathematical methods in linguistic research. Iazyk i kultura v epokhu integratsii nauchnogo znaniia i professionalizatsii obrazovaniia, 2022, (3-1): 170–177. (In Russ.) https://elibrary.ru/pxlqjx

17. Moiseenko I. M. Maltseva-Zamkovaja N. V., Tšuikina N. V. Conceptual compression of a text as a component of communicative competence. Communication Studies, 2020, 7(2): 439–458. (In Russ.) https://doi.org/10.24147/2413-6182.2020.7(2).439-458

18. Musaev A. A., Grigoriev D. A. Extracting knowledge from text messages: Overview and state-of-the-art. Computer Research and Modeling, 2021, 13(6): 1291–1315. (In Russ.) https://doi.org/10.20537/2076-7633-2021-13-6-1291-1315

19. Pentsova M. M. Linguistic semiotics of Scandinavian place-names in Scotland. Language. Culture. Translation. Communication, ed. Demyankov V. Z. Moscow: Tezaurus, 2015, 533–537. (In Russ.) https://elibrary.ru/ynpdqd

20. Pereletov K. S. Review of methods for summarizing texts and their areas of application. Higher school: Scientific research: Proc. Interuniv. Intern. Congress, Moscow, 10 Jun 2021. Moscow: Infiniti, 2021, 147–156. (In Russ.) https://elibrary.ru/xipzom

21. Polonsky D. A., Fedosova A. O. Text preprocessing for solving NLP (Natural Language Processing). Mavlyutov Readings: Proc. XV All-Russian Sci. Conf., Ufa, 26–28 Oct 2021. Ufa: USATU, 2021, vol. 4, 798–802. (In Russ.) https://elibrary.ru/autkfl

22. Polyakova I. N., Zaitsev I. O. Modification of the graph method for automatic abstraction tasks taking into account synonymy. International Journal of Open Information Technologies, 2022, 10(4): 45–54. (In Russ.) https://elibrary.ru/chvbat

23. Sokolova Yu. V., Chalova O. A. Formation and development Features of independent work skills at the initial stages of higher professional education. World of Science. Pedagogy and psychology, 2020, 8(2). (In Russ.) https://doi.org/10.15862/81PDMN220

24. Sorokina S. G. Artificial intelligence in interdisciplinary linguistics. Vestnik Kemerovskogo gosudarstvennogo universiteta. Seriia: Gumanitarnye i obshchestvennye nauki, 2023. 7(3): 267–280. (In Russ.) https://doi.org/10.21603/2542-1840-2023-7-3-267-280

25. Sorokina S. G. Recurrence as a means of argumentation in the construction of texts of scientific content. Cand. Philol. Sci. Diss. Moscow, 2016, 196. (In Russ.) https://elibrary.ru/zejqeb

26. Sorokina S. G. Applying automatic summarization technology to academic publications. The three "L’s" in the paradigm of modern humanities: Linguistics, literary studies, linguodidactics: Proc. All-Russian Sci.-Prac. Conf., Moscow, 23 Nov 2023. Moscow: Yazyki Narodov Mira, 2024, 132–138. (In Russ.) https://elibrary.ru/duydpi

27. Sorokina S. G., Ulanova K. L. The role of article title in implementing the category of identity. Sovremennoe pedagogicheskoe obrazovanie, 2020, (2): 202–207. (In Russ.) https://elibrary.ru/aqclzy

28. Stepanyuk Yu. V. Classifying methods of linguadidactic adaptation of foreign language texts. Language and reality. Scientific readings at the V. G. Gak Department of Romance Languages: Proc. VI Intern. Conf., Moscow, 22–26 Mar 2021. Moscow: Sputnik+, 2021, vol. 6, 411–417. (In Russ.) https://elibrary.ru/hkllet

29. Tolstykh O. M. The usage of the educational electronic environment Moodle for optimisation of the educational process in teaching a foreign language of non-linguistic students. Omsk Scientific Readings: Proc. All-Russian Sci.-Prac. Conf., Omsk, 11–16 Dec 2017. Omsk: OmSU, 2017, 442–443. (In Russ.) https://elibrary.ru/otgrhl

30. Chernyshkova E. V. Rodionova T. V., Veretelnikova Yu. Ya. Teaching medical students to summarize and annotate foreign language texts. Pedagogical interaction: Opportunities and prospects: Proc. V Intern. Sci.-Prac. Conf., Saratov, 28–29 Apr 2023. Saratov: SSMU, 2023, 231–241. (In Russ.) https://elibrary.ru/tqwzlg

31. Abualigah L., Bashabsheh M. Q., Alabool H., Shehab M. Text summarization: A brief review. Recent advances in NLP: The case of arabic language, eds. Abd Elaziz M., Al-qaness M. A. A., Ewees A. A., Dahou A. Cham: Springer, 2020, 1–15. https://doi.org/10.1007/978-3-030-34614-0_1

32. Alam H., Kumar A., Nakamura M., Rahman F., Tarnikova Y., Wilcox Che. Structured and unstructured document summarization: Design of a commercial summarizer using Lexical chains. ICDAR’03: Proc. 7 Intern. Conf., Edinburgh, 6 Aug 2003. IEEE, 2003, 1147–1152. https://doi.org/10.1109/ICDAR.2003.1227836

33. Alami N., Mallahi M. E., Amakdouf H., Qjidaa H. Hybrid method for text summarization based on statistical and semantic treatment. Multimedia Tools and Applications, 2021, 80(13): 19567–19600. https://doi.org/10.1007/s11042-021-10613-9

34. Al-Thanyyan S. S., Azmi A. M. Automated text simplification: A survey. ACM Computing Surveys, 2021, 54(2): 1–36. https://doi.org/10.1145/3442695

35. Arana-Catania M., Procter R., He Yu., Liakata M. Evaluation of abstractive summarisation models with machine translation in deliberative processes. Proceedings of the Third Workshop on New Frontiers in Summarization, online, 2021. Stroudsburg: ACL, 2021, 57–64. https://doi.org/10.18653/v1/2021.newsum-1.7

36. Aydın Ö., Karaarslan E. Is ChatGPT leading generative AI? What is beyond expectations? Academic Platform Journal of Engineering and Smart Systems, 2023, 11(3): 118–134. https://doi.org/10.2139/ssrn.4341500

37. Azaria A. ChatGPT: Usage and limitations. 2022. https://doi.org/10.31219/osf.io/5ue7n

38. Belwal R. C., Rai S., Gupta A. A new graph-based extractive text summarization using keywords or topic modeling. Journal of Ambient Intelligence and Humanized Computing, 2022, 12: 8975–8990. https://doi.org/10.1007/s12652-020-02591-x

39. Bhargava R., Sharma Ya. Deep extractive text summarization. Procedia Computer Science, 2020, 167: 138–146. https://doi.org/10.1016/j.procs.2020.03.191

40. Bhat I. K., Mohd M., Hashmy R. SumItUp: A hybrid single-document text summarizer. Soft computing: Theories and applications. Advances in intelligent systems and computing, eds. Pant M., Ray K., Sharma T., Rawat S., Bandyopadhyay A. Singapore: Springer, 2018, 619–634. https://doi.org/10.1007/978-981-10-5687-1_56

41. Cao M., Zhuge H. Automatic evaluation of text summarization based on semantic link network. SKG 2019: Proc. 15 Intern. Conf., Guangzhou, 17–18 Sep 2019. IEEE, 2020, 107–114. https://doi.org/10.1109/SKG49510.2019.00026

42. Chen D., Ma S., Harimoto K., Bao R., Su Q., Sun X. Group, extract and aggregate: Summarizing a large amount of finance news for forexmovement prediction. Proceedings of the Second Workshop on Economics and Natural Language Processing, Hong Kong, 2019. ACL, 2019, 41–50. https://doi.org/10.18653/v1/D19-5106

43. Dehru V., Tiwari P. K., Aggarwal G., Joshi B., Kartik P. Text summarization techniques and applications. ASCI 2020: Proc. Intern. Conf., Jaipur, 22–23 Dec 2020. IOP, 2021, vol. 1099. https://doi.org/10.1088/1757-899X/1099/1/012042

44. Dönicke T., Gödeke L., Varachkina H. Annotating quantified phenomena in complex sentence structures using the example of generalising statements in literary texts. Proceedings of the 17th Joint ACL-ISO Workshop on Interoperable Semantic Annotation, online, 2021. ACL, 2021, 20–32.

45. Fabbri A. R., Kryściński W., McCann B., Xiong C., Socher R., Radev D. SummEval: Re-evaluating summarization evaluation. Transactions of the Association for Computational Linguistics, 2021, 9: 391–409. https://doi.org/10.1162/tacl_a_00373

46. Ganesh A., Jaya A., Sunitha C. An overview of semantic based document summarization in different languages. ECS Transactions, 2022, 107(1): 6007–6017. https://doi.org/10.1149/10701.6007ecst

47. Gao Y., Xu Y., Huang H., Liu Q., Wei L., Liu L. Jointly learning topics in sentence embedding for document summarization. IEEE Transactions on Knowledge and Data Engineering, ed. Chen L. Piscataway: IEEE, 2020, 32(4): 688–699. https://doi.org/10.1109/TKDE.2019.2892430

48. Gehrmann S., Deng Y., Rush A. M. Bottom-up abstractive summarization. Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, Brussels, 31 Oct – 4 Nov 2018. ACL, 2018, 4098–4109. https://doi.org/10.18653/v1/D18-1443

49. Ghadimi A., Beigy H. Hybrid multi-document summarization using pre-trained language models. Expert Systems with Applications, 2022, 192. https://doi.org/10.1016/j.eswa.2021.116292

50. Ghodratnama S., Zakershahrak M., Sobhanmanesh F. Adaptive summaries: A personalized concept-based summa­rization approach by learning from users' feedback, 2021. https://doi.org/10.48550/arXiv.2012.13387

51. Goldstein J., Mittal V., Carbonell J., Kantrowitz M. Multi-document summarization by sentence extraction. Proceedings of the 2000 NAACL-ANLP Workshop on Automatic summarization, Seattle, 30 Apr 2000. Stroudsburg: ACL, 2000, 4: 40–48. https://doi.org/10.3115/1117575.1117580

52. Guadalupe Ramos J., Navarro-Alatorre I., Flores Becerra G., Flores-Sánchez O. A formal technique for text summarization from web pages by using latent semantic analysis. Research in Computing Science, 2019, 148(3): 11–22. https://doi.org/10.13053/rcs-148-3-1

53. Gupta S., Gupta S. K. Abstractive summarization: An overview of the state of the art. Expert Systems with Applications, 2019, 121: 49–65. https://doi.org/10.1016/j.eswa.2018.12.011

54. Gupta H., Kottwani A., Gogia S., Chaudhari Sh. Text analysis and information retrieval of text data. WiSPNET 2016: Proc. Intern. Conf., Chennai, 23–25 Mar 2016. IEEE, 2016, 788–792. https://doi.org/10.1109/WiSPNET.2016.7566241

55. Gupta H., Patel M. Study of extractive text summarizer using the elmo embedding. I-SMAC 2020: Fourth Intern. Conf., Palladam, 7–9 Oct 2020. IEEE, 2020, 829–834. https://doi.org/10.1109/I-SMAC49090.2020.9243610

56. Gupta S., Sharaff A., Nagwani N. K. Frequent item-set mining and clustering based ranked biomedical text summarization. The Journal of Supercomputing, 2023, 79: 139–159. https://doi.org/10.1007/s11227-022-04578-1

57. Hovy E., Lin Ch.-Y. Automated Text Summarization and the summarist system. Proceedings of a Workshop held at Baltimore, Baltimore, 13–15 Oct 1998. ACL, 1998, 197–214. https://doi.org/10.3115/1119089.1119121

58. Huang D., Cui L., Yang S., Bao G., Wang K., Xie J., Zhang Y. What have we achieved on text summarization? Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP), online, 16–20 Nov 2020. ACL, 2020, 446–469. https://doi.org/10.18653/v1/2020.emnlp-main.33

59. Hupkes D., Dankers V., Mul M., Bruni E. Compositionality decomposed: How do neural networks generalise? Journal of Artificial Intelligence Research, 2020, 67: 757–795. https://doi.org/10.1613/jair.1.11674

60. Jalil Z., Nasir J. A., Nasir M. Extractive multi-document summarization: A review of progress in the last decade. IEEE Access, 2021, 9: 130928–130946. https://doi.org/10.1109/ACCESS.2021.3112496

61. Jalilifard A., Caridá V. F., Mansano A. F., Cristo R. S., da Fonseca F. P. C. Semantic sensitive TF-IDF to determine word relevance in documents. Advances in Computing and Network Communications, eds. Thampi S. M., Gelenbe E., Atiquzzaman M., Chaudhary V., Li K. C. Singapore: Springer, 2021. https://doi.org/10.1007/978-981-33-6987-0_27

62. Ježek K., Steinberger J. Automatic summarizing (The state-of-the-art 2007 and new challenges). Znalosti, 2008, 1–12.

63. Khan A., Salim N., Kumar Y. J. A framework for multi-document abstractive summarization based on semantic role labelling. Applied Soft Computing, 2015, 30: 737–747. https://doi.org/10.1016/j.asoc.2015.01.070

64. Khurana D., Koli A., Khatter K., Singh S. Natural language processing: State of the art, current trends and challenges. Multimedia Tools and Applications, 2023, 82: 3713–3744. https://doi.org/10.1007/s11042-022-13428-4

65. Kutlu M., Ciǧir C., Cicekli I. Generic text summarization for Turkish. The Computer Journal, 2010, 53(8): 1315–1323. https://doi.org/10.1093/comjnl/bxp124

66. Lamsiyah S., El Mahdaouy A., El Alaoui S. O., Espinasse B. A supervised method for extractive single document summarization based on sentence embeddings and neural networks. AI2SD’2019: Proc. Conf., Marrakech, 8–11 Jul 2019. Cham: Springer, 2020, 1105: 75–88. https://doi.org/10.1007/978-3-030-36674-2_8

67. Linhares Pontes E., Moreno J. G., Doucet A. Linking named entities across languages using multilingual word embeddings. JCDL’20: Proc. Conf., Wuhan, 1–5 Aug 2020. NY: ACL, 2020, 329–332. https://doi.org/10.1145/3383583.3398597

68. Lubis A. R., Nasution M. K., Sitompul O. S., Zamzami E. M. The effect of the TF-IDF algorithm in times series in forecasting word on social media. Indonesian Journal of Electrical Engineering and Computer Science, 2021, 22(2): 976–984. https://doi.org/10.11591/ijeecs.v22.i2.pp976-984

69. Maddela M., Alva-Manchego F., Xu W. Controllable text simplification with explicit paraphrasing. Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, online, 6–11 Jun 2021. ACL, 2021, 3536–3553. https://doi.org/10.18653/v1/2021.naacl-main.277

70. Mihalcea R. Graph-based ranking algorithms for sentence extraction, applied to text summarization. Proceedings of the ACL 2004 on Interactive poster and demonstration sessions, Barcelona, 21–26 Jul 2004. Stroudsburg: ACL, 2004. https://doi.org/10.3115/1219044.1219064

71. Mishra A. R., Naruka M. S., Tiwari S. Extraction techniques and evaluation measures for extractive text summari­sation. In: Sustainable Computing. Transforming Industry 4.0 to Society 5.0, eds. Awasthi S., Sanyal G., Travieso-Gonzalez C. M., Srivastava P. K., Singh D. K., Kant R. Cham: Springer, 2023, 279–290. https://doi.org/10.1007/978-3-031-13577-4_17

72. Mohammed Badry R., Sharaf Eldin A., Saad Elzanfally D. Text summarization within the latent semantic analysis framework: Comparative study. International Journal of Computer Applications, 2013, 81(11): 40–45. https://doi.org/10.5120/14060-2366

73. Mohan M. J., Sunitha C., Ganesh A., Jaya A. A study on ontology based abstractive summarization. Procedia Computer Science, 2016, 87: 32–37. https://doi.org/10.1016/j.procs.2016.05.122

74. Mutlu B., Sezer E. A., Ali Akcayol M. Multi-document extractive text summarization: A comparative assessment on features. Knowledge-Based Systems, 2019, 183. https://doi.org/10.1016/j.knosys.2019.07.019

75. Orăsan C., Pekar V., Hasler L. a comparison of summarisation methods based on term specificity estimation. Proceedings of the Fourth International Conference on Language Resources and Evaluation (LREC’04). Lisbon: ELRA, 2004, 1037–1040. URL: http://www.lrec-conf.org/proceedings/lrec2004/pdf/362.pdf (3 May 2024).

76. Pramita Widyassari A., Rustad S., Fajar Shidik G., Noersasongko E., Syukur A., Affandy A., Rosal Ignatius Moses Setiadi D. Review of automatic text summarization techniques & methods. Journal of King Saud University – Computer and Information Sciences, 2022, 34(4): 1029–1046. https://doi.org/10.1016/j.jksuci.2020.05.006

77. Puduppully R. S., Jain P., Chen N., Steedman M. Multi-document summarization with centroid-based pretraining. Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers), Toronto, 9–14 Jul 2023. ACL, 2023, 128–138. https://doi.org/10.18653/v1/2023.acl-short.13

78. Saadany H., Orasan C. BLEU, METEOR, BERTScore: Evaluation of metrics performance in assessing critical translation errors in sentiment-oriented text. TRITON 2021: Proc. Conf., online, 5–7 Jul 2021. 2021, 48–56. https://doi.org/10.26615/978-954-452-071-7_006

79. Saggion H., Lapalme G. Generating indicative-informative summaries with SumUM. Computational Linguistics, 2002, 28(4): 497–526. https://doi.org/10.1162/089120102762671963

80. Sharma G., Sharma D. Automatic text summarization methods: A comprehensive review. SN Computer Science, 2022, 4(1). https://doi.org/10.1007/s42979-022-01446-w

81. Shinde M., Mhatre D., Marwal G. Techniques and research in text summarization – a survey. 2021 ICACITE: Proc. Intern. Conf., Greater Noida, 4–5 Mar 2021. IEEE, 2021, 260–263. https://doi.org/10.1109/ICACITE51222.2021.9404670

82. Sri S. H. B., Dutta S. R. A survey on automatic text summarization techniques. Journal of Physics: Conference Series, 2021, 2040(1). https://doi.org/10.1088/1742-6596/2040/1/012044

83. Supriyono, Wibawa A. P., Suyono, Kurniawan F. A survey of text summarization: Techniques, evaluation and challenges. Natural Language Processing Journal, 2024, 7. https://doi.org/10.1016/j.nlp.2024.100070

84. Thaiprayoon S., Unger H., Kubek M. Graph and centroid-based word clustering. NLPIR’20: Proc. 4 Intern. Conf., Seoul, 18–20 Dec 2020. NY: ACL, 2021, 163–168. https://doi.org/10.1145/3443279.3443290

85. Uçkan T., Karci A. Extractive multi-document text summarization based on graph independent sets. Egyptian Informatics Journal, 2020, 21(3): 145–157. https://doi.org/10.1016/j.eij.2019.12.002

86. Wilber M., Timkey W., Van Schijndel M. To point or not to point: Understanding how abstractive summarizers paraphrase text. Findings of ACL: ACL-IJCNLP 2021, eds. Zong Ch., Xia F., Li W., Navigli R. Stroudsburg: ACL, 2021, 3362–3376. https://doi.org/10.18653/v1/2021.findings-acl.298

87. Wolhandler R., Cattan A., Ernst O., Dagan I. How "multi" is multi-document summarization? EMNLP 2022: Proc. Conf., Abu Dhabi, 7–11 Dec 2022. Stroudsburg: ACL, 2022, 5761–5769. https://doi.org/10.18653/v1/2022.emnlp-main.389

88. Xiao L., Wang L., He H., Jin Y. Copy or rewrite: Hybrid summarization with hierarchical reinforcement learning. AAAI-20: Proc. 34 Conf., New York, 7–12 Feb 2020. Palo Alto: AAAI Press, 2020, 34(5): 9306–9313. https://doi.org/10.1609/aaai.v34i05.6470

89. Yadav D., Desai J., Yadav A. K. Automatic text summarization methods: A comprehensive review, 2022. https://doi.org/10.48550/arXiv.2204.01849

90. Yadav A. K., Maurya A. K., Ranvijay R. S., Yadav R. Sh. Extractive text summarization using recent approaches: A survey. International Information and Engineering Technology Association, 2021, 26(1): 109–121. https://doi.org/10.18280/isi.260112

91. Yadav A. K., Ranvijay R. S., Yadav R. S., Maurya A. K. Graph-based extractive text summarization based on single document. Multimedia Tools and Applications, 2024, 83(7): 18987–19013. https://doi.org/10.1007/s11042-023-16199-8

92. Zhou H., Ren W., Liu G., Su B., Lu W. Entity-aware abstractive multi-document summarization. Findings of ACL: ACL-IJCNLP 2021, eds. Zong Ch., Xia F., Li W., Navigli R. Stroudsburg: ACL, 2021, 351–362. https://doi.org/10.18653/v1/2021.findings-acl.30


Login or Create
* Forgot password?