Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Goat dairy products keep growing in popularity and production volumes. However, the risks of counterfeiting also increase as more and more goat milk is substituted with cow milk. Inspecting authorities need reliable methods to check the authenticity of milk obtained from small ruminants. The type of ruminant can be determined by isolating DNA from somatic cells in the milk. This research featured samples of raw, sterilized, pasteurized, and powdered goat milk. The research objective was to select the optimal kit for DNA extraction from a number of commercial kits available in Russia. The DNK-Sorb-S-M was developed at the Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Russia, and employs silicon particles. The Sintol Research and Production Company, Russia, designed three DNA kits. The DNK-Extran-2 relies on salting out nucleic acids; the GMO-Sorb-B uses the organic extraction method; the GMO-Magnosorb is based on magnetic particles. This research involved a high-quality simplex PCR followed by gel electrophoresis to define the isolated DNA samples. A fragment of the D-loop of mitochondrial DNA of Capra hircus served as the target gene. The sorbent methods for nucleic acid extraction proved more efficient as they were able to simplify and accelerate molecular genetic tests, thus ensuring the quality and safety of commercial dairy products. New control methods increase consumer confidence in goat dairy products.
small heminant, goat milk, DNA, PCR, extraction, isolation
1. Idamokoro, E. M. The significance of goat milk in enhancing nutrition security: a scientiometric evaluation of research studies from 1966 to 2020 / E. M. Idamokoro // Agriculture & Food Security. 2023. Vol. 12. №. 1. P. 34. https://doi.org/10.1186/s40066-023-00441-5
2. Zaharova, I. N. Smesi na osnove koz'ego moloka v pitanii detey rannego vozrasta: chto my znaem o nih segodnya? / I. N. Zaharova, T. E. Borovik, A. N. Kas'yanova [i dr.] // Rossiyskiy vestnik perinatologii i pediatrii. 2018. T. 63, № 6. S. 31–36. https://doi.org/10.21508/1027-4065-2018-63-5-31-36; https://www.elibrary.ru/yqzjmd
3. Maathuis, A. Protein Digestion and Quality of Goat and Cow Milk Infant Formula and Human Milk Under Simulated Infant Conditions / A. Maathuis // Journal of pediatric gastroenterology and nutrition. 2017. Vol. 65(6). P. 661–666. https://doi.org/10.1097/ MPG.0000000000001740
4. Wang, Z. Evaluation of the nutrition and function of cow and goat milk based on intestinal microbiota by metagenomic analysis / Z. Wang [et al.] // Food & Function. 2018. Vol. 9, Iss. 4. P. 2320–2327. https://doi.org/10.1039/c7fo01780d
5. Haenlein, G. F. W. Goat milk in human nutrition / G. F. W. Haenlein // Small Ruminant Research. 2004. Vol. 51(2). P. 155–163. https://doi.org/10.1016/j.smallrumres.2003.08.010
6. Mel'denberg, D. N. Razrabotka kompleksnoy ocenki belkovogo sostava moloka syr'ya razlichnyh sel'skohozyaystvennyh zhivotnyh dlya vyrabotki produktov funkcional'noy napravlennosti / D. N. Mel'denberg, O. S. Polyakova, E. S. Semenova, E. A. Yurova // Hranenie i pererabotka sel'hozsyr'ya. 2020. № 3. S. 118–133. https://doi.org/10.36107/spfp.2020.352; https://elibrary.ru/ifwhek
7. Yurova, E. A. Izuchenie sostava i svoystv moloka sel'skohozyaystvennyh zhivotnyh kak osnovy dlya proizvodstva produktov funkcional'noy napravlennosti / E. A. Yurova, S. A. Fil'chakova, O. S. Polyakova, N. A. Zhizhin // Molochnaya promyshlennost'. 2020. № 12. S. 7–9. https://doi.org/10.31515/1019-8946-2020-12-7-9; https://elibrary.ru/sscbfb
8. Verruck, S. Functionality of the components from goat’s milk, recent advances for functional dairy products development and its implications on human health / S. Verruck [et al.] // Journal of Functional Foods. 2019. Vol. 52. P. 243–257. https://doi.org/10.1016/j.jff.2018.11.017
9. Kulikova, N. I. Sovremennoe sostoyanie i perspektivy razvitiya otrasli kozovodstva / N. I. Kulikova, A. S. Kozubov // Politematicheskiy setevoy elektronnyy nauchnyy zhurnal Kubanskogo gosudarstvennogo agrarnogo universiteta. 2022. № 183. S. 130–138. https://doi.org/10.21515/1990-4665-183-012; https://elibrary.ru/bbhahg
10. Gil'manov H. H. Problema fal'sifikacii vidovoy prinadlezhnosti moloka / H. H. Gil'manov, R. R. Vafin, V. G. Bliadze, I. Yu. Mihaylova // Aktual'nye voprosy molochnoy promyshlennosti, mezhotraslevye tehnologii i sistemy upravleniya kachestvom. 2020. T. 1, № 1(1). S. 125–129. https://doi.org/10.37442/978-5-6043854-1-8-2020-1-125-129; https://elibrary.ru/rvzgvt
11. Pokorska, J. New Rapid Method of DNA Isolation from Milk Somatic Cells / J. Pokorska // Animal Biotechnology. 2016. Vol. 27, № 2. P. 113–117. https://doi.org/10.1080%2F10495398.2015.1116446
12. Amills, M. Isolation of genomic DNA from milk samples by using Chelex resin / M. Amills [et al.] // The Journal of dairy research . 1997. Vol. 64, № 2. P. 231–238. https://doi.org/10.1017/s0022029997002161
13. D’Angelo, F. Technical note: a simple salting-out method for DNA extraction from milk somatic cells: investigation into the goat CSN1S1 gene / F. D’Angelo [et al.] // Journal of dairy science. 2007. Vol 90(7). P. 3550–3552. https://doi.org/10.3168/jds.2007-0149
14. Usman, T. Comparison of methods for high quantity and quality genomic DNA extraction from raw cow milk / T. Usman [et al.] // Genetics and Molecular Research. 2014. Vol. 13, № 2. P. 3319–3328. https://doi.org/10.4238/2014.april.29.10
15. Deng, L. Detection of the Bovine Milk Adulterated in Camel, Horse, and Goat Milk Using Duplex PCR / L. Deng, [et al.] // Food Analytical Methods. 2020. Vol. 13(4). P. 560–567. https://doi.org/10.1007/s12161-019-01678-2
16. Benitez-Velásquez, M. Assessment of four different DNA extraction methodologies for the molecular detection of phage λ and Bacillus sp. in raw bovine milk samples / M. Benitez-Velásquez [et al.] // International Dairy Journal. 2024. Vol. 151. 105862. https://doi.org/10.1016/j.idairyj.2023.105862
17. Yalçınkaya, B. Comparison of DNA extraction methods for meat analysis / B. Yalçınkaya [et al]. // Food Chemistry. 2017. Vol. 221. P. 1253–1257. https://doi.org/10.1016/j.foodchem.2016.11.032
18. Schrader, C. PCR inhibitors–occurrence, properties and removal / C. Schrader [et al.] // Journal of applied microbiology. 2012. Vol. 113. №. 5. P. 1014–1026. https://doi.org/10.1111/j.1365-2672.2012.05384.x