Россия
Россия
Россия
ГРНТИ 27.01 Общие вопросы математики
ГРНТИ 31.01 Общие вопросы химии
ГРНТИ 34.01 Общие вопросы биологии
In the present paper we give a rough classification of exterior differential forms on a Riemannian manifold. We define conformal Killing, closed conformal Killing, coclosed conformal Killing and harmonic forms due to this classification and consider these forms on a Riemannian globally symmetric space and, in particular, on a rank-one Riemannian symmetric space. We prove vanishing theorems for conformal Killing L 2-forms on a Riemannian globally symmetric space of noncompact type. Namely, we prove that every closed or co-closed conformal Killing L 2-form is a parallel form on an arbitrary such manifold. If the volume of it is infinite, then every closed or co-closed conformal Killing L 2-form is identically zero. In addition, we prove vanishing theorems for harmonic forms on some Riemannian globally symmetric spaces of compact type. Namely, we prove that all harmonic one-formsvanish everywhere and every harmonic r -form r 2 is parallel on an arbitrary such manifold. Our proofs are based on the Bochnertechnique and its generalized version that are most elegant and important analytical methods in differential geometry “in the large”.
Riemannian symmetric space, conformal Killing L2-form, harmonic form
1. Bourguignon J.-P. Formules de Weitzenbock en dimension 4. Seminare A. Besse sur la géometrie Riemannienne dimension 4, Cedic. Ferman, Paris, 1981, vol. 3, pp. 308-333.
2. Petersen P. Riemannian Geometry. NY: Springer, 2006. 401 p.
3. Stepanov S.E. A class of closed forms and special Maxwell's equations. Tensor N.S., 1997, vol. 58, no. 3, pp. 233-242.
4. Stepanov S.E. On conformal Killing 2-form of the electromagnetic field. Journal of Geometry and Physics, 2000, vol. 33, no. 3-4, pp. 191-209.
5. Tachibana S. On conformal Killing tensor in a Riemannian space. Tohoku Mathematical Journal, 1969, vol. 21, pp. 56-64.
6. Stepanov S.E., Tsyganok I.I., and Dmitrieva T.V. Harmonic and conformally Killing forms on complete Riemannian manifold. Russian Mathematics, 2017, vol. 61, no. 3, pp. 44-48.
7. Stepanov S.E. A new strong Laplacian on differential forms. Mathematical Notes, 2004, vol. 76, no. 3, pp. 420-425.
8. Stepanov S.E. and Mikesh J. Eigenvalues of the Tachibana operator which acts on differential forms. Differential Geometry and its Applications, 2014, vol. 35, pp. 19-25.
9. Frolov V.P. and Zelenkov A. Introduction to Black Hole Physics. Oxford: Oxford Univ. Press, 2011. 488 p.
10. Stephani H., Kramer D., Maccallum M., Hoenselaers C., and Herlt E. Exact Solutions of Einstein’s Field Equations. Cambridge: Cambridge University Press, 2003. n.p.
11. Chen B.-Y. A simple characterization of generalized Robertson-Walker spacetimes, General Relativity and Gravitation, 2014, vol. 46, no. 11, p 5. DOI:https://doi.org/10.1007/s10714-014-1833-9.
12. Stepanov S. and Tsyganok I. Conformal Killing L2-forms on complete Riemannian manifolds with nonpositive curvature operator. Journal of Mathematical Analysis and Applications, 2018, vol. 458, pp. 1-8.
13. Chavel I. On Riemannian symmetric spaces of rank one. Advances in Mathematics, 1997, vol. 4, pp. 236-263.
14. Koboyashi S. and Nomizu K. Foundations of differential geometry, vol. 1. New York-London: Int. Publishers, 1963. 345 p.
15. Baum H. and Juhl A. Conformal differential geometry. Q-curvature and conformal holonomy. Berlin, Birkhäuser Verlag AG, 2010. 152 p.
16. Stepanov S.E., Jukl M., and Mikeš J. On dimensions of vector spaces of conformal Killing forms, Algebra, Geometry and Mathematical Physics. Springer-Verlag, Berlin and Heidelberg, 2014, pp. 495-510.
17. Chavel I. Riemannian Symmetric Spaces of Rank One (Lecture Notes in Pure and Applied Mathematics, vol. 5). New York, Marcel Dekker, 1972. 81 p.
18. Kashiwada T. On conformal Killing tensor. Natural. Sci. Rep. Ochanomizu Univ., 1968, vol. 19, no 2, pp. 67-74.
19. Yano K. and Bochner S. Curvature and Betti numbers. Prinseton, Prinseton Univ. Press, 1953. 189 p.
20. Carter B. and Mc Lenaghan R.G. Generalized total angular momentum operator for the Dirac equation in curved space-time. Phys. Rev. D, 1979, vol. 19, pp. 1093-1097.
21. Gibbons G.W. and Ruback P.J. The hidden symmetries of multicentre metrics. Commun. Math. Phys., 1988, pp. 115, pp. 267-300.
22. Charlton P. and Benn I.M. Dirac symmetry operators from conformal Killing-Yano tensor. Classical Quantum Gravity, 1997, vol. 14, no. 5, pp. 1037-1042.
23. Kubiznak D. Black hole spacetimes with Killing-Yano symmetries. XVIth International Congress on Math. Physics: Prague, Czech Republic, 3-8 August 2009, Word Scientific Publ. Co., Singapore, 2010, pp. 580-587.
24. Hodge W.V.D. The theory and applications of harmonic integrals. Cambridge, Cambridge Univ. Press, 1941. 281 p.
25. Hodge W.V.D. A Dirichlet problem for harmonic functions with applications to analytic varieties. Proc. London Math. Soc., 1934, vol. 36, pp. 257-303.
26. Helgason S. Differential geometry and symmetric spaces. USA, AMS Chelsea Publishing, 2001.
27. Stepanov S.E. and Mikeš J. Betti and Tachibana numbers of compact Riemannian manifolds. Differential Geom. Appl., 2013, vol. 31, no. 4, pp. 486-495.
28. Stepanov S.E. and Mikeš J. Betti and Tachibana numbers. Miskolc Math. Notes, 2013, vol. 14, no. 2, pp. 475-486.
29. Stepanov S.E. Curvature and Tachibana numbers. Mat. Sb., 2011, vol. 202, no 7, pp. 135-146.
30. Tsagas G. On the Killing tensor fields on a compact Riemannian manifold. Balkan Journal of Geometry and its Applications, 1996, vol. 1, no. 1, pp. 1-97.
31. Stepanov S.E. and Tsyganok I.I. Conformal Killing L2-forms on complete Riemannian manifolds with nonpositive curvature operator. Journal Math. Anal. Appl., 2018, vol. 458, pp. 1-8.
32. Dodziuk J. L2 harmonic forms on rotationally symmetric Riemannian manifolds. Proceedings of the American Mathematical Society, 1979, vol. 77, no. 3, pp. 395-400.
33. Bérard P.H. From vanishing theorems to estimating theorems: the Bochner technique revisited. Bulletin of the American Mathematical Society, 1988, vol. 19, no. 2, pp. 371-406.
34. Li P. Geometric Analysis. Cambridge, Cambridge University Press, 2012.
35. Duchesne B. Infinite dimensional Riemannian symmetric spaces with fixed-sing curvature operator. Ann. Inst. Fourier, 2015, vol. 65, no. 1, pp. 211-244.
36. Yau S.T. Some function-theoretic properties of complete Riemannian manifold and their applications to geometry. Indiana University Mathematical Journal, 1976, vol. 25, no. 7, pp. 659-679.
37. Becce A. Einstein manifolds. Berlin-Heidelberg, Springer-Verlag, 1987.
38. Terras A. Harmonic analysis on symmetric spaces - higher rank spaces, positive definite matrix space and generalizations. New York, Springer Science and Business Media, 2015.
39. Kobayashi S. and Nomizu K. Foundations of differential geometry, Vol. II. New York-London, Interscience Publishers, 1969.
40. Greene R.E. and Wu H. Integral of subharmonic functions on manifolds of nonnegative curvature. Inventiones Math., 1974, vol. 27, pp. 265-298.
41. Hall B.C. The range of the heat operator. Contemporary Mathematics, 2006, vol. 398, pp. 203-232.
42. Mostow G.D. Strong rigidity of locally symmetric spaces. Annals of Mathematics Studies, No. 78, Princeton, Princeton University Press, 1973.
43. Parker J. Hyperbolic spaces. Jyväskylä Lectures in Mathematics, 2008, vol. 2.