MEMBRANE FILTRATION OF STRETCH-CURD CHEESE: OPTIMAL TECHNOLOGICAL PARAMETERS
Abstract and keywords
Abstract (English):
Stretch-curd cheese is prepared using the pasta filata technique. It needs protein separation to obtain a concentrated casein product that stabilizes the ratio of protein fractions in the mix. This process requires optimal membrane filtration parameters to yield stretch-curd cheese with good functional properties. This research is the first of its kind in domestic food science to provide a comprehensive study of micellar casein in stretch-curd cheese production. The article contains some recommendations for improving the functional properties of the final product. The test involved a membrane installation (Dairy Plant Uzlovskiy Molochniy Kombinat LLC, Uzlovaya, Russia) with rolled polymer membranes with a pore size of 0.05 μm. The research tested the effect of four factors on protein separation. The resulting optimal parameters (for skimmed milk) were as follows: pasteurization temperature ≤ 68 °C; temperature supply to the microfilter – 45-50 °C; incoming pressure ≤ 0.10 MPa. The casein content in the microfiltration retentate depended on the dilution degree. The rational technological scheme to obtain the optimal ratio of protein fractions included separation of whole milk, pasteurization of skimmed milk, diafiltration, and microfiltration. Further research will determine the optimal ratio of protein fractions for the production of stretch-curd cheese with targeted functional properties.

Keywords:
stretch-curd cheese, pizza cheese, pasta filata cheese, membrane technologies, microfiltration, micellar casein, protein composition
Text
Text (PDF): Read Download
References

1. Berezuckiy, A. A. Myagkie syry: potencial rosta i ozhidaniya rynka / A. A. Berezuckiy // Syrodelie i maslodelie. 2024. № 3. S. 23–25. https://elibrary.ru/alsell

2. Tililicyna, Yu. V. Funkcional'nye svoystva vytyazhnyh syrov i metody ih korrekcii / Yu. V. Tililicyna, O. V. Dymar // Syrodelie i maslodelie. 2025. № 1. S. 43–50. https://doi.org/10.21603/2073-4018-2025-1-17; https:// elibrary.ru/lhedwv

3. Govindasamy-Lucey, S. Use of Cold Microfiltration Retentates Produced with Polymeric Membranes for Standardization of Milks for Manufacture of Pizza Cheese / S. Govindasamy-Lucey [et al.] // Journal of Dairy Science. 2007. Vol. 90(10). P. 4552–4568. https://doi.org/10.3168/jds.2007-0128

4. Khramtsov, A. G. Current methods of cheese enrichment with calcium salts / A. G. Khramtsov, V. A. Dinyakov, A. D. Lodygin // Modern Science and Innovations. 2022. Vol. 1(37). P. 68–79. https://doi.org/10.37493/2307-910X.2022.1.7; https:// elibrary.ru/zveckb

5. Qu, P. On the cohesive properties of casein micelles in dense systems / P. Qu, A. Bouchoux, G. Gésan-Guiziou // Food Hydrocolloids. 2015. Vol. 43. P. 753–762. https://doi.org/10.1016/j.foodhyd.2014.08.005; https://elibrary.ru/uwwsql

6. Qu, P. Dead-end filtration of sponge-like colloids: The case of casein micelle / P. Qu, G. Gésan-Guiziou, A. Bouchoux // Journal of Membrane Science. 2012. Vol. 417–418. P. 10–19. https://doi.org/10.1016/j.memsci.2012.06.003

7. Singh, H. Milk Proteins: From Expression to Food / ed. by H. Singh, M. Boland, A. Thompson. – Academic Press, 2014. – 622 p.

8. Evdokimov, I. A. Innovacionnye tehnologii molochnyh produktov / pod red. I. A. Evdokimova. – SPb.: Professiya, 2023. – 242 s.

9. France, T. C. The effects of temperature and transmembrane pressure on protein, calcium and plasmin partitioning during microfiltration of skim milk / T. C. France [et al.] // International Dairy Journal. 2021. Vol. 114. 104930. https://doi.org/10.1016/j.idairyj.2020.104930

10. Hartinger, M. Milk Protein Fractionation by Means of Spiral-Wound Microfiltration Membranes: Effect of the Pressure Adjustment Mode and Temperature on Flux and Protein Permeation / M. Hartinger [et al.] // Foods. 2019. Vol. 8(6). 180. https://doi.org/10.3390/foods8060180

11. Steinhauer, T. Impact of Protein Interactions and Transmembrane Pressure on Physical Properties of Filter Cakes Formed during Filtrations of Skim Milk / T. Steinhauer, W. Kühnl, U. Kulozik // Procedia Food Science. 2011. Vol. 1. P. 886–892. https://doi.org/10.1016/j.profoo.2011.09.134

12. Bouchoux, A. A general approach for predicting the filtration of soft and permeable colloids: The milk example / A. Bouchoux [et al.] // Langmuir. 2014. Vol. 30(1). P. 22–34 https://doi.org/10.1021/la402865p; https://elibrary.ru/spntgd

13. Steinhauer, T. Structure of milk protein deposits formed by casein micelles and β-lactoglobulin during frontal microfiltration / T. Steinhauer, U. Kulozik, R. Gebhardt // Journal of Membrane Science. 2014. Vol. 468. P. 126–132. https://doi.org/10.1016/j.memsci.2014.05.027

14. Coppola, L. E. Comparison of milk-derived whey protein concentrates containing various levels of casein / L. E. Coppola [et al.] // International Journal of Dairy Technology. 2014. Vol. 67(4). P. 467–473. https://doi.org/10.1111/1471-0307.12157; https://elibrary.ru/waoqhi

15. Rezaei, H. Effects of operating parameters on fouling mechanism and membrane flux in cross-flow microfiltration of whey / H. Rezaei, F. Z. Ashtiani, A. Fouladitajar // Desalination. 2011. Vol. 274(1–3). P. 262–271. https://doi.org/10.1016/j.desal.2011.02.015

16. Heidebrecht, H.-J. Data concerning the fractionation of individual whey proteins and casein micelles by microfiltration with ceramic gradient membranes / H.-J. Heidebrecht, U. Kulozik // Data in Brief. 2019. Vol. 25. 104102. https://doi.org/10.1016/j.dib.2019.104102

Login or Create
* Forgot password?