from 01.01.2023 until now
Kemerovo, Kemerovo, Russian Federation
This article describes psychophysiological, cognitive, and regulatory processes demonstrated by students of higher and vocational education in modern academic environment, as well as the factors affecting their academic performance. The research included 42 students that majored in Informatics at Kemerovo State University and 90 students of similar specializations from Siberian Polytechnic Technical College. The empirical part relied on R. Amthauer’s Intelligence Structure Test, motivational questionnaires, emotional state tests, and psychophysiological tremormetric and visual motor tests. Cognitive and regulatory processes proved to correlate with psychophysiological indicators. The university students showed a stronger correlation between mathematical skills and academic achievements. Being more practically oriented, the college students demonstrated better stress resistance and hand-to-eye coordination. The university students were guided mostly by intrinsic motives related to personal development while the college students concentrated on financial rewards and career growth. In both groups, cognitive abilities went down under stress. Individualized approach in training and the need to develop self-control can enhance the intellectual productivity and maintain psychological health in students.
cognitive processes, regulatory processes, psychophysiological processes, intellectual abilities, psychometric intelligence, psychology of learning, higher education, vocational education
1. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Development, 2000, 71(1): 44–56. https://doi.org/10.1111/1467-8624.00117
2. Shi C. A study of the relationship between cognitive styles and learning strategies. Higher Education Studies, 2011, 1(1). https://doi.org/10.5539/hes.v1n1p20
3. Shi Y., Qu S. The effect of cognitive ability on academic achievement: The mediating role of self-discipline and the moderating role of planning. Frontiers in Psychology, 2022, 13. https://doi.org/10.3389/fpsyg.2022.1014655; ; EDN: https://elibrary.ru/PULNKU
4. Lyakso E. E., Nozdrachev A. D., Sokolova L. V. Age physiology and psychophysiology. Moscow: Iurait, 2024, 396. (In Russ.)
5. Selye H. Stress without distress. Moscow: Progress, 1982, 127. (In Russ.)
6. Velichkovsky B. M. Cognitive science. Fundamentals of epistemic psychology. 2nd ed. Moscow: Iurait, 2020, vol. 1, 405. (In Russ.) https://elibrary.ru/nbmekf; EDN: https://elibrary.ru/NBMEKF
7. Fernandez-Duque D., Johnson M. L. Attention metaphors: How metaphors guide the cognitive psychology of attention. Cognitive Science, 1999, 23(1): 83–116. https://doi.org/10.1207/s15516709cog2301_4
8. Kahneman D. Attention and Effort. NJ: Prentice-Hall, 1973, 246.
9. Rumelhart D. E., McClelland J. L. Parallel distributed processing: Explorations in the microstructure of cognition. Cambridge: MIT Press, 1987, 632.
10. Nurkova V. V., Berezanskaya N. B. General psychology. 3rd ed. Moscow: Iurait, 2024, 514. (In Russ.)
11. Churikov I. Yu., Kagan E. S. Motivating students with different cognitive abilities. Vestnik Kemerovskogo gosudarstvennogo universiteta. Seriia: Gumanitarnye i obshchestvennye nauki, 2023, 7(4): 399–408. (In Russ.) https://doi.org/10.21603/2542-1840-2023-7-4-399-408; ; EDN: https://elibrary.ru/BZRTSQ
12. Tunik E. E. Amthauer's Intelligence Test. Data analysis and interpretation. St. Petersburg: Rech, 2009, 96. (In Russ.)
13. Practical psychodiagnostics. Methods and tests, ed. Raigorodsky D. Ya. Samara: BAKhRAKh-M, 2001, 672. (In Russ.)
14. Shapiro S. A. Motivation and stimulation of personnel. Moscow: GrossMedia, 2005, 224. (In Russ.); EDN: https://elibrary.ru/QODQVJ
15. Ilyin E. P. Motivation and motives. St. Petersburg: Piter, 2000, 512. (In Russ.) https://elibrary.ru/ruuldx; EDN: https://elibrary.ru/RUULDX
16. Eliseev O. P. A workshop on personality psychology. St. Petersburg: Piter, 2003, 554. (In Russ.)
17. Nemchin T. A. States of neuropsychic tension. Leningrad: LSU, 1983, 166. (In Russ.)
18. Yakhin K. K., Mendelevich D. M. Clinical questionnaire for the identification and assessment of neurotic conditions. In: Mendelevich V. D. Clinical and medical psychology: A practical guide. Moscow: MEDpress-inform, 1998, 545–552. (In Russ.) https://elibrary.ru/wfalks; EDN: https://elibrary.ru/WFALKS
19. Kulikov L. V. A guide to the methods of diagnosis of mental states, moods, and feelings. St. Petersburg: SPbSU, 2003. (In Russ.)
20. Sopov V. F. Mental states in intense professional activity. Moscow: Triksta, 2005, 126. (In Russ.) https://elibrary.ru/qxnrsr; EDN: https://elibrary.ru/QXNRSR
21. Doskin V. A., Lavrentieva N. A., Strongina O. M. et al. Psychological SAN test in labor physiology studies. Gigiena truda i profzabolevanii, 1975, (5): 28–32. (In Russ.)
22. Kiroi V. N. Physiological methods in psychology. Rostov-on-Don: TsVVR, 2003, 224. (In Russ.)
23. Talalaev A. A. Central nervous system and mental performance. In: Bobrov A. F., Bogachuk G. P., Vasyukov G. V. et al. Hygienic studies of personal protective equipment. Moscow, 1992, 240–257. (In Russ.)
24. Peisakhov N. M. Patterns of dynamics of mental phenomena. Kazan: Kazan University, 1984, 235. (In Russ.)
25. González-Betancor S. M., Bolívar-Cruz A., Verano-Tacoronte D. Self-assessment accuracy in higher education: The influence of gender and performance of university students. Active Learning in Higher Education, 2019, 20(2): 101–114. https://doi.org/10.1177/1469787417735604
26. Geary D. C., Hoard M. K., Nugent L., Scofield J. E. In-class attention, spatial ability, and mathematics anxiety predict across-grade gains in adolescents’ mathematics achievement. Journal of Educational Psychology, 2021, 113(4): 754–769. https://doi.org/10.1037/edu0000487; ; EDN: https://elibrary.ru/AXJAQD
27. Güner P., Gökçe S. Linking critical thinking disposition, cognitive flexibility and achievement: Math anxiety’s mediating role. The Journal of Educational Research, 2021, 114(5): 458–473. https://doi.org/10.1080/00220671.2021.1975618; ; EDN: https://elibrary.ru/OEUAKS
28. Hirschi A., Spurk D. Striving for success: Towards a refined understanding and measurement of ambition. Journal of Vocational Behavior, 2021, 127. https://doi.org/10.1016/j.jvb.2021.103577; ; EDN: https://elibrary.ru/GVLBFZ
29. Carlson A. G., Rowe E., Curby T. W. Disentangling fine motor skills’ relations to academic achievement: The relative contributions of visual-spatial integration and visual-motor coordination. The Journal of Genetic Psychology, 2013, 174(5): 514–533. https://doi.org/10.1080/00221325.2012.717122
30. Palmer L. The Relationship between Stress, Fatigue, and Cognitive Functioning. College Student Journal, 2013, 47(2): 312–325. URL: https://www.scirp.org/reference/ReferencesPapers?ReferenceID=1631489 (accessed 25 Jul 2024).
31. Klingberg T. The overflowing brain: Information overload and the limits of working memory. Oxford: Oxford University Press USA, 2008, 224.
32. Behrens M., Gube M., Chaabene H., Prieske O., Zenon A., Broscheid K.-C., Schega L., Husmann F., Weippert M. Fatigue and human performance: An updated framework. Sports Medicine, 2023, 53(1): 7–31. https://doi.org/10.1007/s40279-022-01748-2; ; EDN: https://elibrary.ru/MJPTNU
33. De Corte E., Depaepe F., Op ’t Eynde P., Verschaffel L. Students’ self-regulation of emotions in mathematics: An analysis of meta-emotional knowledge and skills. ZDM Mathematics Education, 2011, 43: 483–495. https://doi.org/10.1007/s11858-011-0333-6; ; EDN: https://elibrary.ru/CPYJII
34. Ramme R. A., Neumann D. L., Donovan C. L. The relationship between cognitive ability and motivation during cognitive tasks of varying complexity. Learning and Motivation, 2022, 77. https://doi.org/10.1016/j.lmot.2022.101782; ; EDN: https://elibrary.ru/DWIETE
35. Cragg L., Gilmore C. Skills underlying mathematics: The role of executive function in the development of mathematics proficiency. Trends in Neuroscience Education, 2014, 3(2): 63–68. https://doi.org/10.1016/j.tine.2013.12.001
36. Lam K. K. L., Zhou M. An examination of the conceptual structure of long-term goal striving. Personality and Social Psychology Bulletin, 2022, 48(4): 550–565. https://doi.org/10.1177/01461672211016190; ; EDN: https://elibrary.ru/AIXQIP
37. Lee W. W. S. Relationships among grit, academic performance, perceived academic failure, and stress in associate degree students. Journal of Adolescence, 2017, 60(1): 148–152. https://doi.org/10.1016/j.adolescence.2017.08.006
38. Abdelrahman R. M. Metacognitive awareness and academic motivation and their impact on academic achievement of Ajman University students. Heliyon, 2020, 6(9). https://doi.org/10.1016/j.heliyon.2020.e04192