Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Russian Federation
3D-printing is gaining more and more popularity in the dairy industry. However, no objective criteria for strength properties have been developed so far. Dairy production needs the ultimate parameters at which a finished 3D-printed dairy product retains its shape and appealing consumer properties. This study tested the strength properties of 3D-systems made from processed cheese. It established a direct correlation between the strength properties and the component composition. Processed cheese cubes of 20 mm each side were obtained from nineteen faces of round filaments with a cross-sectional area of 2 mm², melted layer by layer through an extruder. Protein proved to be the most important component in maintaining the structural and mechanical properties of 3D-systems. The qualitative composition of dairy proteins was as important as its quantity because the samples varied only in the content of skim milk powder and whey protein concentrate. As the protein content increased, the strength properties of the samples deteriorated. The optimal sample had a 1:1.8 mass fraction ratio of whey to casein protein. It exhibited the highest shear (1,831 Pa), tensile (5,885 Pa), and compressive stress (69,068 Pa) values. With increasing casein mass fraction, the strength properties deteriorated. This phenomenon indicated that whey proteins were more suitable for 3D-printing. The obtained data can serve as guidelines in calculating the stability of dairy 3D-systems in the current lack of references and standards.
additive technologies, 3D-printing, dairy products, sustainability, strength characteristics
1. Varvara, R. A. 3D Food Printing: Principles of obtaining digitally designed nourishment / R. A. Varvara, K. Szabo, D. C. Vodnar // Nutrients. 2021. Vol. 13(10). 3617. https://doi.org/10.3390/nu13103617
2. Dou, X. The application of dairy products and their derivatives as edible inks in 3D printing technology: A review / H. Dou, J. Ren // International Journal of Food Science and Technology. 2024. Vol. 59(11). R. 8630–8644. https://doi.org/10.1111/ijfs.17195
3. Derossi, A. Personalized, digitally designed 3D printed food towards the reshaping of food manufacturing and consumption / A. Derossi [et al.] // npj Science of Food. 2024. Vol. 8(1). 54. https://doi.org/10.1038/s41538-024-00296-5
4. Joshi, S. Assessment of 3D printability of composite dairy matrix by correlating with its rheological properties / S. Joshi [et al.] // Food Research International. 2021. Vol. 141. 110111. https://doi.org/10.1038/s41538-024-00296-5
5. Barkovskaya, I. A. Syvorotochnye belki – perspektivnye nositeli essencial'nyh mikroelementov / I. A. Barkovskaya // Innovacionnye tehnologii v pischevoy promyshlennosti: nauka, obrazovanie i proizvodstvo: Materialy IH Mezhdunarodnoy nauchno-tehnicheskoy konferencii. – Voronezh: Voronezhskiy gosudarstvennyy universitet inzhenernyh tehnologiy, 2024. – S. 55-59. https://elibrary.ru/vnkofy
6. Yurova, E. A. Demineralizovannaya molochnaya syvorotka kak osnovnoe syr'e dlya proizvodstva produktov specializirovannogo pitaniya / E. A. Yurova, T. V. Kobzeva, S. A. Fil'chakova // Pischevaya promyshlennost'. 2022. № 3. S. 64–67. https://doi.org/10.52653/PPI.2022.3.3.0; https://elibrary.ru/iqsxuo
7. Zobkova, Z. S. Vybor istochnikov biologicheski aktivnyh veschestv dlya funkcional'nyh kislomolochnyh produktov / Z. S. Zobkova [i dr.] // Molochnaya promyshlennost'. 2018. № 3. S. 59–62. https://doi.org/10.31515/1019-8946-2018-3-59-62; https://elibrary.ru/yorrff
8. Barkovskaya, I. A. Kompleksnaya modifikaciya belkovogo profilya molochnoy syvorotki kak podhod k sozdaniyu obogaschennyh belkovyh ingredientov / I. A. Barkovskaya, A. E. Ryabova, I. V. Rozhkova // Pischevye sistemy. 2025. T. 8, № 2. S. 221–230. https://doi.org/10.21323/26; https://elibrary.ru/jhloak
9. Hewa Nadugala, B. The effect of casein genetic variants, glycosylation and phosphorylation on bovine milk protein structure, technological properties, nutrition and product manufacture / B. Hewa Nadugala [et al.] // International Dairy Journal. 2022. Vol. 133. 105440. https://doi.org/10.1016/j.idairyj.2022.105440
10. Lyudvik, P. Osnovy tehnologicheskoy mehaniki / P. Lyudvik // Raschety na prochnost'. 1971. № 15. S. 132–166.
11. Kolesnikov, K. S. Mashinostroenie. Enciklopediya. Dinamika i prochnost' mashin. Teoriya mehanizmov i mashin / K. S. Kolesnikov, V. S. Zarubin. Tom 1-3. Kniga 1. – M.: Mashinostroenie, 1994. – 534 s. https://elibrary.ru/vwwjel
12. Rabotnov, Yu. N. Application of the nonlinear theory of heredity to the description of time effects in polymeric materials / Yu. N. Rabotnov, L. Kh. Papernik, E. I. Stepanychev // Polymer Mechanics. 1971. Vol. 7(1). P. 63–73. https://doi.org/10.1007/bf008




