Moscow, Russian Federation
Moscow, Russian Federation
Moscow, Moscow, Russian Federation
Pectins can modify structural and mechanical properties of fermented dairy products. The article introduces a new approach to determining the applicability of pectins from various bioresources for this purpose. Pectins from various sources were ranked in descending order within each of the target technological properties based on their molecular characteristics and physicochemical parameters. This approach revealed the optimal pectins to modify the technological properties of particular dairy products. The pectin samples were obtained from sugar beet pulp, citrus peels, apple pomace, sunflowers, pumpkin pomace, carrot cake, and potato cake. They were introduced into formulations of yogurt, fermented milk drink, acidophilus sauce, sour cream, and fermented milk jelly. No major molecular factor affected the correlation between the molecular properties of pectins and the manifestation of their technological properties in the fermented dairy pectin-containing products. As a result, all molecular characteristics were taken into account as a complex. A nonlinear increase was detected in the dynamic viscosity of yogurt, fermented milk drink, acidophilus sauce, and sour cream. It correlated with the increase in the mass fraction of pectin, which made it possible to vary the consistency of the product depending on consumer preferences. With regard to fermented dairy jelly, ≥0.8% pectin resulted in an excessive density. In some cases, combinations of pectins had a more synergistic effect on viscosity and gelling ability than separate applications.
pectin, molecular characteristics, dairy products, pectin-containing products, technological properties
1. Sista Kameshwar, A. K. Structural and functional properties of pectin and lignin-carbohydrate complexes de-esterases: a review / A. K. Sista Kameshwar, W. Qin // Bioresources and Bioprocessing. 2018. № 5. 43. https://doi.org/10.1186/s40643-018-0230-8
2. Yapo, B. M., Gnakri, D. Pectic Polysaccharides and Their Functional Properties // Polysaccharides / ed. by K. Ramawat, J. M. Mérillon. – Cham: Springer, 2015. – P. 1729–1749. https://doi.org/10.1007/978-3-319-16298-0_62
3. Zobkova, Z. S. O kompleksnom primenenii stabiliziruyuschih konsistenciyu i modificiruyuschih molochnyy belok pischevyh dobavok v yogurte / Z. S. Zobkova, T. P. Fursova, D. V. Zenina [i dr.] // Molochnaya promyshlennost'. 2016. № 10. S. 54–55. https://elibrary.ru/wmmdrx
4. Zobkova, Z. S. Zavisimost' otnositel'noy biologicheskoy cennosti yogurta ot vida stabiliziruyuschih dobavok / Z. S. Zobkova, T. P. Fursova, D. V. Zenina [i dr.] // Molochnaya promyshlennost'. 2021. № 1. S. 24–26. https://doi.org/10.31515/1019-8946-2021-01-24-26; https://www.elibrary.ru/qlhjiu
5. Barkovskaya, I. A. Polisaharid-kontroliruemaya kristallizaciya laktozy v sguschennom moloke s saharom / I. A. Barkovskaya, A. G. Kruchinin, S. N. Turovskaya [i dr.] // Food Metaengineering. 2023. №1(4). S. 11–27. https://doi.org/10.37442/fme.2023.4.25. https://www.elibrary.ru/yhokhn
6. Chung, W. S. F. Prebiotic potential of pectin and pectic oligosaccharides to promote anti-inflammatory commensal bacteria in the human colon / W. S. F. Chung [et al.] // FEMS Microbiology Ecology. 2017. № 93(11). https://doi.org/10.1093/femsec/fix127
7. Pascale, N. The Potential of Pectins to Modulate the Human Gut Microbiota Evaluated by In Vitro Fermentation: A Systematic Review / N. Pascale [et al.] // Nutrients. 2022. № 14(17). 3629. https://doi.org/10.3390/nu14173629
8. Ciriminna, R. Pectin production and global market / R. Ciriminna [et al.] // Agro Food Industry Hi Tech. 2016. № 27(5). P. 17–20.
9. Harris, Ph. J. Plant cell walls and cell-wall polysaccharides: structures, properties and uses in food products / Ph. J. Harris, G. S. Bronwen // International Journal of Food Science & Technology. 2006. Vol. Iss. 41(s2). P. 129–143. https://doi.org/10.1111/j.1365-2621.2006.01470.x
10. Petrov, A. N. O vvedenii principa nasyschayuschey dopolnitel'nosti fermentativnogo processa v metodologiyu glubokoy pererabotki rastitel'nogo syr'ya / A. N. Petrov, T. Yu. Kondratenko // Hranenie i pererabotka sel'hozsyr'ya. 2022. № 3. S. 93–108. https://doi.org/10.36107/spfp.2022.365; https://www.elibrary.ru/eusicv
11. Roman-Benn, A. Pectin: An overview of sources, extraction and applications in food products, biomedical, pharmaceutical and environmental issues / A. Roman-Benn [et al.] // Food Chemistry Advances. 2023. № 2. 100192. https://doi.org/10.1016/j.focha.2023.100192
12. Mohnen, D. A. A new model for the biochemistry of pectin synthesis: GAUTs synthesize diverse HG glycans in structurally and functionally distinct plant cell wall polymers / D. A. Mohnen [et al.] // The FASEB Journal. 2019. Vol. 33, № S1. 216.2. https://doi.org/10.1096/fasebj.2019.33.1_supplement.216.2
13. Cui, S. W. Emulsifying and structural properties of pectin enzymatically extracted from pumpkin / S. W. Cui, Y. H. Chang // LWT – Food Science and Technology. 2014. Vol. 58. Iss. 2). P. 396–403. https://doi.org/10.1016/j.lwt.2014.04.012
14. Huang J. Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel / J. Huang [et al.] // Food Hydrocolloids. 2021. № 110. 106140. https://doi.org/10.1016/j.foodhyd.2020.106140